# 16. 文本搜索引擎Demo
本文基于Milvus向量数据库,搭建一个简单的文本搜素引擎。参考文章(text_search_engine)[https://www.milvus-io.com/text_search_engine]
技术方案:文本向量化,向量数据存储在Milvus数据库中。用户的输入计算向量,根据向量相似度算法找到匹配的结果。
下边的步骤:
- 安装依赖库。
pip3 install -q towhee pymilvus==2.2.11 -i https://mirrors.aliyun.com/pypi/simple/
- 下载数据集。数据来自towhee
wget -q https://github.com/towhee-io/examples/releases/download/data/New_Medium_Data.csv
- 准备数据和清理数据
import pandas as pd
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
df = pd.read_csv('New_Medium_Data.csv', converters={'title_vector': lambda x: eval(x)})
df.head()
# 创建向量数据表
connections.connect(host='10.12.8.30', port='19530')
def create_milvus_collection(collection_name, dim):
if utility.has_collection(collection_name):
utility.drop_collection(collection_name)
fields = [
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=False),
FieldSchema(name="title", dtype=DataType.VARCHAR, max_length=500),
FieldSchema(name="title_vector", dtype=DataType.FLOAT_VECTOR, dim=dim),
FieldSchema(name="link", dtype=DataType.VARCHAR, max_length=500),
FieldSchema(name="reading_time", dtype=DataType.INT64),
FieldSchema(name="publication", dtype=DataType.VARCHAR, max_length=500),
FieldSchema(name="claps", dtype=DataType.INT64),
FieldSchema(name="responses", dtype=DataType.INT64)
]
schema = CollectionSchema(fields=fields, description='search text')
collection = Collection(name=collection_name, schema=schema)
index_params = {
'metric_type': "L2",
'index_type': "IVF_FLAT",
'params': {"nlist": 2048}
}
collection.create_index(field_name='title_vector', index_params=index_params)
return collection
has = utility.has_collection("search_article_in_medium")
if not has:
print("create collection search_article_in_medium")
collection = create_milvus_collection('search_article_in_medium', 768)
else:
collection = Collection("search_article_in_medium")
print("exist collection search_article_in_medium")
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
- 数据插入到到向量表中search_article_in_medium
from towhee import ops, pipe, DataCollection
insert_pipe = (pipe.input('df')
.flat_map('df', 'data', lambda df: df.values.tolist())
.map('data', 'res', ops.ann_insert.milvus_client(host='10.12.8.30',
port='19530',
collection_name='search_article_in_medium'))
.output('res')
)
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
- 向量检索
import numpy as np
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
collection = Collection("search_article_in_medium")
collection.load()
collection.num_entities
search_pipe = (pipe.input('query')
.map('query', 'vec', ops.text_embedding.dpr(model_name="/home/models/dpr-ctx_encoder-single-nq-base"))
.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0))
.flat_map('vec', ('id', 'score'), ops.ann_search.milvus_client(host='10.12.8.30',
port='19530',
collection_name='search_article_in_medium'))
.output('query', 'id', 'score')
)
res = search_pipe('funny python demo')
DataCollection(res).show()
res = search_pipe.batch(['funny python demo', 'AI in data analysis'])
for re in res:
DataCollection(re).show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
结果
小结:非结构化文本通过调用模型得到向量值。然后给利用向量数据库的能力做检索。这个跟传统意义上的关键词检索不一样。关键词检索是文本分词做倒排索引。可以阅读文章ES中的倒排索引与相关性算法计算 (opens new window)来了解下倒排索引。
Apache License 2.0 | Copyright © 2022 by xueliang.wu 苏ICP备15016087号